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Instructional Implications 
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George W. Bright, University of North Carolina at Greensboro 

Our purpose is to bring together perspectives concerning the processing and use of statistical 
graphs to identify critical factors that appear to influence graph comprehension and to suggest 
instructional implications. After providing a synthesis of information about the nature and struc- 
ture of graphs, we define graph comprehension. We consider 4 critical factors that appear to 
affect graph comprehension: the purposes for using graphs, task characteristics, discipline 
characteristics, and reader characteristics. A construct called graph sense is defined. A sequence 
for ordering the introduction of graphs is proposed. We conclude with a discussion of issues 
involved in making sense of quantitative information using graphs and ways instruction may 
be modified to promote such sense making. 

Key Words. All school levels; Content knowledge; Research issues; Review of research; 
Statistics; Stochastics 

Statistics and data analysis emerged as a major component of the school math- 
ematics curriculum during the 1990s (National Council of Teachers of Mathematics 
[NCTM], 1989, 2000). The current meaning of data analysis includes a heavy 
reliance on graphical representations (Shaughnessy, Garfield, & Greer, 1996), 
reflecting that the use of visual displays of quantitative data is pervasive in our 
highly technological society. Creation of such displays often is as easy as the click 
of a button. Clearly, to be functionally literate, one needs the ability to read and 
understand statistical graphs and tables. Yet educators have much to learn about 
the processes involved in reading, analyzing, and interpreting information presented 
in data graphs and tables. 

As early as 1915, efforts to standardize graphics methods appeared in the form 
of preliminary recommendations from the Joint Committee on Standards for 
Graphic Presentation with the premise that 

if simple and convenient standards can be found and made generally known, there will 
be possible a more universal use of graphic methods with a consequent gain to mankind 
because of the greater speed and accuracy with which complex information may be 
imparted and interpreted. (McCall, 1939, p. 475) 

Several graphics handbooks (e.g., Brinton, 1914; Haskell, 1922; Modley & 
Lowenstein, 1952; Schmid & Schmid, 1979; Tufte, 1983) provided sets of design 
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guidelines that were based primarily on authors' intuitions drawn from the wisdom 
of practice. Similar handbooks focused on the design of tables (e.g., Hall, 1943; 
Walker & Durost, 1936). In the late 1970s, researchers interested in information 
processing and the psychology of graphics began to study graph perception. Later 
graphics handbooks (e.g., Cleveland, 1985; Kosslyn, 1994) reflected integration of 
the results of this research. 

Research concerning the processing and use of graphs has received and continues 
to receive attention in several fields. Research in information systems and decision 
sciences reflects efforts to evaluate the effectiveness of business graphics as an aid 
in decision making. Several researchers have considered graphical information as part 
of investigations related to audiovisual communications. Psychology and human- 
factors researchers focus attention on various features of human interaction with a 
display, including pattern perception, memory of images, spatial reasoning, and 
vision. Information processing models of graphical perception help educators make 
sense of how people process visual information displayed in graphs. In addition, 
research in the fields of reading, document literacy, statistics, and, more recently, 
mathematics education and statistics education offers further relevant information. 
However, there appears to have been little communication among researchers holding 
these different perspectives. Overall, no one has proposed a coherent framework that 
addresses the domain of graph comprehension. Researchers need to synthesize what 
is known and to consider how this knowledge informs both practice and research. 

Our purpose in this article is to bring together key ideas from various perspectives, 
going beyond several earlier reviews of the literature (DeSanctis, 1984; Jarvenpaa 
& Dickson, 1988; MacDonald-Ross, 1977; Malter, 1952), to identify critical factors 
that appear to influence comprehension of graphs and to suggest instructional impli- 
cations. In the first part of the article, we define what we mean by graphs and 
provide an analysis of the structure of graphs and tables. Next, we define graph 
comprehension. We then address several of the critical factors: purposes for using 
graphs, task characteristics, discipline characteristics, and reader characteristics. 

In the second part of the article, we suggest instructional implications that reflect 
consideration of these critical factors. We propose a construct called graph sense and 
identify associated behaviors that may provide evidence of graph comprehension. 
We suggest a sequence for the introduction of different types of graphs and identify 
considerations about the nature of representations not addressed by earlier research. 
We conclude with a discussion of what is involved in creating and adapting displays 
for purposes of making sense of quantitative information, as related to the develop- 
ment of graph comprehension. 

PART I: GRAPHS, COMPREHENSION, AND CRITICAL FACTORS 

Defining Graphs and the Structural Components of Graphs and Tables 

Exactly what constitutes a graph has been the subject of various papers (e.g., 
Bertin, 1980; Doblin, 1980; Fry, 1984; Guthrie, Weber, & Kimmerly, 1993; 
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Twyman, 1979). Fry's definition of a graph was generic: "A graph is information 
transmitted by position ofpoint, line or area on a two-dimensional surface" (p. 5), 
including all spatial designs and excluding displays that incorporate the use of 
symbols such as words and numerals (e.g., tables). Wainer (1992), however, char- 
acterized graphs in a way that includes statistical graphs used to convey informa- 
tion in a variety of fields but excludes many other kinds of visualizations authors 
of earlier work had included. Unlike plans, maps, or geometric drawings that use 
spatial characteristics (e.g., shape or distance) to represent spatial relations, graphs 
use spatial characteristics (e.g., height or length) to represent quantity (e.g., the 
number of cars sold or the cost of living) (Gillan & Lewis, 1994). 

William Playfair (late 1700s) has been credited with inventing most of the 
currently used statistical graphs, including picture graphs, line plots, bar graphs, 
pie graphs, and histograms. General use of graphs in scientific reporting did not 
occur until the 19th century (Spence & Lewandowsky, 1990). Tukey (1977) intro- 
duced displays that are now considered important in the school curriculum: stem- 
and-leaf plots (or stem plots) and box-and-whisker plots (or box plots). Several 
authors (e.g., Fry, 1984; Tukey, 1977) have implicitly or explicitly developed 
taxonomies of graphs that are similar and have relevance for the school curriculum. 
For this article, we reviewed only literature related to statistical graphs that domi- 
nate the school curriculum, namely, standard graphs and tables (as a type of 
display linked to graphs) of univariate data and line graphs. On the basis of our 
consideration of even this limited range of graphs, we were able to lay out critical 
factors that seem to influence graph comprehension. 

Graphs share similar structural components (Kosslyn, 1989, 1994). Theframe- 
work of a graph (e.g., axes, scales, grids, reference markings) gives information 
about the kinds of measurements being used and the data being measured. The 
simplest framework has an L shape, with one leg (x-axis) standing for the data being 
measured and the other (y-axis) providing information about the measurements 
being used. Picture graphs, line plots, bar graphs, histograms, and line graphs are 
examples of those with implicit or explicit L-shaped frameworks. Box plots use a 
variation of an L-shaped framework. Other graphs such as stem plots and tables 
have T-shaped frameworks. Still other graphs such as pie graphs have a framework 
based on polar coordinates (Fry, 1984). 

Visual dimensions, called specifiers, are used to represent data values. For 
example, specifiers may be the lines on a line graph, the bars on a bar graph, or 
other marks that specify particular relations among the data represented within the 
framework. Graphs also include labels. In an L-shaped framework, each leg of the 
framework has a label naming the type of measurement being made or the data to 
which the measurement applies. The title of the graph itself may be considered a 
kind of label. The background of a graph includes any coloring, grid, and pictures 
over which the graph may be superimposed. 

Although every graph has these four components, each kind of graph also has 
its own "language" associated with these structural components; that language may 
be used to discuss the data displayed. For example, in a line plot, distribution of 
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Xs (specifiers) across several data values as marked on a horizontal scale (frame- 
work) indicates that varied measures are being reported. Interpreting the graph in 
Figure 1, for example, one might ask, "Do all the boxes of raisins have the same 
number of raisins?" An explanation might provide evidence of the reader' s knowl- 
edge of the structure of the graph: "No, because if they did, all the Xs would be on 
the same number." 

X X 
X X 
X X X 
X X X X X X 
X X X X X X X 
X X X X X X X X X X 

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
Number of Raisins in a Box 

Figure 1. Number of raisins in a half-ounce box. 

The structure of tables can be linked to the structure of graphs. Mosenthal and 
Kirsch (1990a, 1990b) have explored graphs from the perspective of their rela- 
tion to organized lists or tables, which are types of document structures. "Simple 
lists are made up of a set of items that share a common feature that can be repre- 
sented by a label" (1990a, p. 372), for example, using the label vehicles to describe 
a simple list with items: cars, vans, and motor homes. Given the frequency with 
which the people owning vehicles in each of these categories wash their vehicles 
(i.e., weekly, biweekly, monthly, or never), one may combine a variety of simple 
lists and organize them as intersecting lists (e.g., as a table in which the rows repre- 
sent different vehicles and the columns represent frequencies of washing these 
vehicles). If the data are recorded in percentages, three pie graphs, one for each 
vehicle type, showing frequency of washing can be constructed. Similarly, such 
information can be represented in various bar graphs (and can be reported in forms 
other than percentages). Because one can move back and forth between such list 
structures and types of graphs, visually displaying a table of information has 
inherent advantages. 

Tables appear to be used in two ways. One way is as a type of data display. 
Recommendations made by Ehrenberg (as cited in MacDonald-Ross, 1977) for the 
design of tables as a display type included several principles, such as rounding 
numbers to two significant digits to facilitate mental arithmetic and providing row 
or column averages or both as conceptual reference points. Mosenthal and Kirsch' s 
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work (1990a, 1990b) highlighted the links between well-structured tables and 
graphical representations. 

Tables may also be used for organizing information as an intermediate step to 
creating graphical representations. The graph maker may need to organize data in 
tables (e.g., frequency tables) before graphs can be made. Computer graphics 
programs and graphing calculators often require data to be entered in tables. To 
represent these data graphically, one must decide how to set up the table. For 
example, in some spreadsheet programs, if one's goal is to display data in a bar 
graph, the data must be entered already organized as frequencies. However, with 
other software, raw data may be entered in a table without regard for order or 
frequency; the software organizes the data to reflect the desired graphical repre- 
sentation. Apparently attention to the use of tables as transition tools for organizing 
information to be represented graphically is needed. 

Bright and Friel (1996, 1998) have outlined possible benefits of focusing on partic- 
ular transitions among graphs (in addition to previously noted transitions between 
tables and graphs) to promote understanding. One can use these transitions to high- 
light the structural relationships between graphs. For example, transitions to using 
bar graphs showing data grouped by frequencies may be made easier for students 
if instruction includes opportunities to transform a line plot into a bar graph and to 

highlight similarities and differences between these two representations. Similarly, 
stem plots and histograms1 are closely linked, with stem plots providing a natural 
transitional device for one to use for grouping data into equal-width intervals when 

constructing a histogram. In fact, by turning a stem plot on its side, one can easily 
imagine a histogram superimposed on top of the leaves of a stem plot. 

Other types of graphs may be related to but are not necessarily developed from 
one another. Data represented in a circle graph can be displayed in a bar graph, but 
the reverse is not always the case. Box plots may be related to histograms; both 

graphs involve the use of scaled intervals to characterize data distributions.2 Box 

plots provide information about variation and center but do not give a sense of the 
overall shape of a distribution. Histograms may provide insights into the overall 

shape of a distribution if one chooses appropriate intervals for scaling. Line graphs 
typically reflect functional relationships or time-series data. Time-series data can 
be presented using bar graphs, but bar graphs, by convention, are not used to convey 
functional relationships (Follettie, 1980). 

1 Generally, histograms, as used in the school curriculum and discussed here, involve the use of equal- 
width class intervals; the data are shown in blocks (i.e., bars) that highlight frequencies (determined 
by reference to a vertical scale) of values within each interval. In any interval, the left endpoint is included 
in the class interval; the right endpoint is excluded. In statistics (Freedman, Pisani, & Purves, 1998), 
histograms often function as area graphs; the blocks in a graph are drawn so that the area of each block 
is proportional to the number of data values found in that respective class interval. The areas of the blocks 
represent percentages; class intervals may not all be the same width. Although a vertical scale is not 
necessary, it may be drawn as a density scale to show percentages. 

2 In histograms, equal-width intervals are used; the number of data values in an interval varies across 
intervals. In box plots, variable-width intervals (i.e., quartiles) are used; the number of data values is 
the same in each interval. 
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A Definition of Graph Comprehension 

Many researchers have focused on graph comprehension as reading and inter- 
preting graphs. Very few have addressed other possible aspects of graph compre- 
hension, including graph construction or invention or graph choice. In general, 
comprehension of information in written or symbolic form involves three kinds 
of behaviors (Jolliffe, 1991; Wood, 1968) that seem to be related to graph compre- 
hension, namely, translation, interpretation, and extrapolation/interpolation. 
Translation requires a change in the form of a communication. To translate 
between graphs and tables, one could describe the contents of a table of data in 
words or interpret a graph at a descriptive level, commenting on the specific struc- 
ture of the graph (Jolliffe, 1991; Wood, 1968). Interpretation requires rearranging 
material and sorting the important from the less important factors (Wood, 1968). 
To interpret graphs, one can look for relationships among specifiers in a graph or 
between a specifier and a labeled axis. Extrapolation and interpolation, consid- 
ered to be extensions of interpretation, require stating not only the essence of the 
communication but also identifying some of the consequences. In working with 
graphs, one could extrapolate or interpolate by noting trends perceived in data or 
by specifying implications (Wood, 1968). 

These three kinds of behaviors seem related to comprehension considered in the 
context of literacy. In a recent international survey of adult literacy (Murray, 
Kirsch, & Jenkins, 1997; Organization for Economic Co-operation and 
Development [OECD], 1995), literacy was equated with the ability to use written 
information to function in society. Among the three domains of literacy identified 
(Murray et al., 1997; OECD, 1995)-prose literacy, document literacy, and quan- 
titative literacy--only document literacy includes graphs. Document literacy is "the 
knowledge and skills required to locate and use information contained in various 
formats, including ... tables, and graphics" (Murray et al., 1997, p. 17). Three major 
aspects of processing information need to be considered: locating, integrating, and 
generating information (OECD, 1995). For locating tasks (i.e., translation), one 
finds information based on specific conditions or features. For integrating tasks 
(i.e., interpretation), the reader "pulls together" two or more pieces of information. 
For generating tasks (i.e., extrapolation/interpolation), one must not only process 
information in the document but also make document-based inferences or draw on 
personal background knowledge. 

Questioning (i.e., question asking and question posing) is an important aspect 
of comprehension. Researchers have proposed that question-asking is a fundamental 
component of cognition and plays a central role in the comprehension of text 
(Graesser, Swamer, Baggett, & Sell, 1996). Low-level questions "address the 
content and interpretation of explicit material whereas deep questions involve 
inference, application, synthesis, and evaluation" (p. 23). In comprehending text, 
readers need to be able to ask questions that help them identify gaps, contradic- 
tions, incongruities, anomalies, and ambiguities in their knowledge bases and in 
the text itself. Teachers need to develop a framework within which to think about 
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which questions to ask. Such a framework for question-asking is relevant for 
considering comprehension of graphs. 

Several authors (Bertin, 1967/1983; Carswell, 1992; Curcio, 1981a, 1981b, 
1987; McKnight, 1990; Wainer, 1992) have characterized the kinds of questions 
that graphs can be used to answer (see Table 1). Three levels of graph compre- 
hension have emerged: an elementary level focused on extracting data from a graph 
(i.e., locating, translating); an intermediate level characterized by interpolating and 
finding relationships in the data as shown on a graph (i.e., integrating, inter- 
preting), and an advanced level that requires extrapolating from the data and 
analyzing the relationships implicit in a graph (i.e., generating, predicting). At the 
third level, questions provoke students' understanding of the deep structure of the 
data presented. We use Curcio's (1981 a, 198 ib, 1987) terminology when referring 
to these three levels, that is, read the data, read between the data, and read beyond 
the data. 

We found a somewhat surprising consensus about the need to consider all three 
types of questions. Such questions can provide cues that activate the process of 
graph comprehension. Students experience few difficulties with "read the data" 
questions, but they make errors when they encounter "read between the data" ques- 

Table 1 
Taxonomy of Skills Required for Answering Questions at Each Level 

Question level 

Elementary Intermediate Overall 
(extract information (find relationships (move beyond 

Author from the data) in the data) the data) 
Bertin Extraction of elemen- Reduction in the number Reduction of all the 
(1983) tary information (e.g., of data categories through data to a single state- 

What was the value of combining and compiling ment or relationship 
Stock X on June 15?) data to discover or create about the data (e.g., For 

fewer categories (e.g., the period of June 15 to 
Over the first five days, June 30, what was the 
how did the value of trend for the value of 
Stock X change?) Stock X?) 

Curcio (Reading the data) (Reading between the data) (Reading beyond the 
(1987) Lifting information Interpretation and integra- data) Extending, predic- 

from the graph to an- tion of information that is pre- ting, or inferring from 
swer explicit ques- sented in a graph-the reader the representation to an- 
tions for which the completes at least one step of swer questions-the 
obvious answer is in logical or pragmatic inferring reader gives an answer 
the graph (e.g., How to get from the question to that requires prior 
many boxes of raisins the answer (e.g., How many knowledge about a ques- 
have 30 raisins in boxes of raisins have more tion that is related to 
them?) than 34 raisins in them?) the graph (e.g., If stu- 

dents opened one more 
box of raisins, how many 
raisins might they 
expect to find?) 

Table I continues 
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Table 1 continued 

Question level 

Elementary Intermediate Overall 
(extract information (find relationships (move beyond 

Author from the data) in the data) the data) 

McKnight Observing single facts Observing relationships with- Interpreting relation- 
(1990) and relationships in in graphs and interpreting ships when responses 

graphically presented graphs as visual displays require making state- 
data or interpreting without reference to the ments that go beyond 
relationships when meaning of graphical ele- the statement of relation- 
responses involve ments in context (e.g., "Con- ships to draw inferences 
paraphrasing or sidering the two curves of the or to recast interpreta- 
restating the facts (e.g., graph only as marks on a tions in more technical 
"What is the projected piece of paper, how do the terms 
food production in changes in these two curves Determining values of 
1985 for the developed compare?" [p. 175]) the data conveyed in the 
countries?" [p. 174]) Interpreting relationships graph as evidence to sup- 

either by stating that a rela- port or reject a proposi- 
tionship exists without de- tion (e.g., "If this graph 
scribing the relationship or was offered as a piece 
by making straightforward of evidence to prove true 
statements of relationships the statement 'Storks 
(e.g., "Given your under- bring babies,' how 
standing of the relationship would you describe the 
between changes in the two connection between the 
curves and given your under- graph and the attempt to 
standing of what each curve to prove the statement 
represents, what interpreta- true?" [p. 178]) 
tion can be made about the Assessing one's own 
relationship between the two evaluation of evidence 
curves?" [p. 176]) provided by quantita- 

tive data 

Wainer Data extraction (e.g., Identification of trends seen Understanding of the 
(1992) "What was petroleum in parts of the data (e.g., deep structure of the data 

use in 1980?" [p. 16]) "Between 1970 and 1985 in their totality, usually 
how has the use of petroleum through comparing 
changed?" [p. 16]) trends and seeing groups 

(e.g., "Which fuel is pre- 
dicted to show the most 
dramatic increase in use?" 
or "Which fuels show 
the same pattern of 
growth?" [p. 16]) 

Carswell Point reading or Local or global visual com- Synthesis or integration 
(1992) attention to a single parison of actual graph fea- of most or all the 

specifier (e.g., "What tures and attention to more graphed values (e.g., 
is the value of [the than a single specifier (e.g., "Is the variability of the 
pie-slice] B?" "Is [the pie-slice] D greater data points large?" 
[p. 541]) than pie-slice C?" or "Is [p. 541]) 

[the pie-slice] A + pie-slice 
B equal to [the pie-slice] C 
+ pie-slice D?" [p. 541]) 
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tions (e.g., Dossey, Mullis, & Jones, 1993; Pereira-Mendoza & Mellor, 1991; 
Wainer, 1980; Zawojewski & Heckman, 1997). Such errors may be related to math- 
ematics knowledge, reading/language errors, scale errors, or reading-the-axes 
errors3 (see, e.g., Bright & Friel, 1998; Curcio, 1987; McKnight & Fisher, 1991; 
Pereira-Mendoza & Mellor, 1991). "Read beyond the data" questions seem to be 
even more challenging. Students must make inferences from the representation in 
order to interpret the data, for example, to compare and contrast data sets, to make 
a prediction about an unknown case, to generalize to a population, or to identify a 
trend. Gal (1998) collapsed the three types of questions to two types: literal- 
reading questions that involve reading the data or reading between the data and 
opinion questions that focus on reading beyond the data. He, too, highlighted the 
challenge of the latter type of question because it requires eliciting and evaluating 
opinions (rather than facts) about information presented in representations. 

By graph comprehension, we mean graph readers' abilities to derive meaning 
from graphs created by others or by themselves. Different levels of questioning 
provoke different levels of comprehension. In addition, several critical factors influ- 
ence graph comprehension: the purposes for using graphs, task characteristics, disci- 
pline characteristics, and reader characteristics. 

Critical Factors Influencing Graph Comprehension 

Purposes for Using Graphs 

The reasons for using graphs are commonly divided into two classes: analysis 
and communication (Kosslyn, 1985). Graphs used for data analysis function as 
discovery tools at the early stages of data analysis when the student is expected to 
make sense of the data; often alternative plots for the same data set are explored. 
Graphs used for purposes of analysis at this stage "are predominantly tools for the 
detection of important or unusual features in the data" (Spence & Lewandowsky, 
1990, p. 20). A good pictorial display of data "forces us to notice what we never 
expected to see" (Tukey, 1977, p. vi). 

This aspect of graph use appears to be related to the school curriculum. The 
instructional focus is on students' construction of various graphs. Traditionally, such 
instruction has been didactic in nature; prescriptions on ways to create different 
kinds of graphs are offered with little attention given to the analysis of reasons the 
graphs were constructed in the first place. As Lehrer and Romberg (1996) noted, 
textbook examples of graphs often are too preprocessed. More recently, attention 
to students' construction of graphs has been addressed within a broader context of 
statistical investigations that focus on the use of graphs for purposes of making sense 
of data (e.g., Cobb, 1999). 

Very little is known about the relationship between the development of graph 
comprehension and the practice of creating graphs within the context of statistical 

3 See later sections of this article for more detail. 
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investigations. Most researchers have investigated students' invention or reinven- 
tion of graphical representations. Curcio and Folkson (1996; Folkson, 1996) 
conducted an exploratory study to examine how kindergarten children invent 
visual displays to communicate data they have collected to answer questions of 
interest to them. The activities were designed to allow children to formulate their 
own questions, conduct a survey, collect and organize data, and communicate their 
findings to their peers in ways that were meaningful to them. Children demonstrated 
that without formal instruction they were able to represent data in four distinct ways: 
(a) by writing specific responses repeatedly, (b) by writing numerals to record their 
counting of data items, (c) by using tally marks, and (d) by writing one number to 
represent the total number of data items for each category. 

DiSessa, Hammer, Sherin, and Kolpakowski (1991), in their work with a sixth- 
grade class involved in inventing graphing using explorations related to motion, 
suggested that 

one of the difficulties with conventional instruction ... is that students' meta-knowledge 
is often not engaged, and so they come to know "how to graph" without understanding 
what graphs are for or why the conventions make sense.... Particular representations 
may not be at the core of what we should teach so much as the uses they serve, criteria 
they meet, and resources they build on. (p. 157) 

Graph instruction within a context of data analysis may promote a high level of 
graph comprehension that includes flexible, fluid, and generalizable understanding 
of graphs and their uses. Note that many researchers who study inventing or rein- 
venting graphs work from the perspective of designing computer environments to 
analyze data (e.g., Berg & Smith, 1994; diSessa et al., 1991; Hancock, Kaput, & 
Goldsmith, 1992; Jackson, Edwards, & Berger, 1993; Lehrer & Romberg, 1996; 
Pratt, 1995). 

Graphs used for communication are defined as pictures intended to convey 
information about numbers and relationships among numbers; "a good graph 
forces the reader to see the information the designer wanted to convey" (Kosslyn, 
1994, p. 271). Such graphs usually contain summary statistics rather than the orig- 
inal data, are simple in form and content, and are intended to display patterns 
(Spence & Lewandowsky, 1990). 

Because graphs are pervasive in our society and are found in such media as maga- 
zines, newspapers, and television, individuals must use graphs to make sense of 
information structured by and communicated from external sources. Within the 
school curriculum, students encounter graphs from external sources in applied situ- 
ations related to disciplines such as science and social studies-contexts in which 
already-designed graphs are presented for purposes of communication. Clearly, 
students' graph comprehension is often tested (e.g., on standardized tests) with 
graphs used to communicate. 

Much graph-comprehension research focuses on graphs used as tools for commu- 
nication; this research is reported in the next three sections on critical factors related 
to characteristics of tasks, discipline, and readers. However, both purposes for graph 
use identified by Kosslyn (1985) are relevant to school instruction, which seems 
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to fall short in enabling students to comprehend graphs well enough to respond 
comfortably and easily to tasks requiring them to read between the data and read 
beyond the data, that is, to attain high levels of graph comprehension. 

Characteristics of Tasks 

Graph perception "refers to the part played by visual perception in analyzing 
graphs" (Legge, Gu, & Luebker, 1989, p. 365). To understand perceptual processes, 
one must identify mental processes that (a) affect early vision and establish a mental 
representation, (b) operate on the representation to enable one to identify or to make 
inferences about nonobvious properties, and (c) integrate one's understanding of 
context with the mental representation to generate a task-appropriate response 
(Simkin & Hastie, 1987). In the first point, we address the syntax of graph percep- 
tion (i.e., visual decoding); in the second point, we acknowledge the importance 
of operations that involve use of the syntactic properties of graphs (i.e., judgment 
tasks); and in the third point, we take into account the semantic content of a graph 
(i.e., context). 

Visually decoding graphs. Researchers developing theory about graph percep- 
tion have addressed the most fundamental issue: Which of the many physical dimen- 
sions associated with graphs (e.g., line length, circular area, dot position) should 
be employed to represent data values to facilitate graph use? Initially, such research 
focused primarily on the visual processing of graphical material, because in an early 
phase in cognitive processing, one attends to the graph and forms a perceptual 
image. Context-free graphs (see Figure 2), the type used in most of this early 
research, generally have unlabeled specifiers; the information presented in the graph 
cannot be interpreted as data. The graph has no obvious context, and, without labels, 
units of measure cannot be determined. If labels are used, they often are letters of 
the alphabet, with frequency axes shown with a numerical scale and no other labels. 

There are two important contributions to early understanding of graph percep- 
tion. Tufte (1983, 1990) emphasized the distinction between data-ink and nondata- 
ink. Data-ink is the nonerasable core of a graphic, the nonredundant ink arranged 
in response to variation in the numbers represented. Tufte recommended eliminating 
all ink that does not convey information. However, this design principle has been 
shown to lack experimental validation (e.g., Carswell, 1992; Kosslyn, 1994; 
Spence & Lewandowsky, 1990; Stock & Behrens, 1991). As a general rule, addi- 
tional ink is considered helpful if it completes a form so that the reader has fewer 
perceptual units to distinguish (e.g., Kosslyn, 1994). 

Cleveland and McGill (1984, 1985; Cleveland, 1985), responsible for formulating 
one of the first theories of graphical perception, identified 10 elementary graphical- 
perception tasks that characterize the basic perceptual judgments a person performs 
to decode visually presented quantitative information encoded on graphs. The 10 
tasks are ordered from most accurately judged to least accurately judged on the basis 
of what is known about the accuracy with which a person performs these tasks. 
Some tasks are identified as being at the same difficulty level, for example, making 
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Simple bar chart Divided bar chart 

Pie chart 

Figure 2. Examples of context-free graphs. Note. From "An information-processing analysis 
of graph perception," by D. Simkin and R. Hastie, 1987, Journal of the American Statistical 
Association, 82, p. 455. Copyright 01987 by the American Statistical Association. Reprinted 
with permission. 

angle judgments or slope judgments (see Table 2). The task of judging the lengths 
of bars in a bar graph is considered to be performed more accurately than the task 
of comparing proportions in a pie graph because the former requires judgments 
of length or of position on a common scale whereas the latter requires judgments 
of angle and possibly area. However, the ordering, based on a theory of visual 
perception, on experiments in graphical perception, and on informal experimen- 
tation, applies to the visual decoding of quantitative variables and not of categorical 
variables. 

"The basic principle of data display that arises from ordering the graphical- 
perception tasks ... is the following: encode data on a graph so that the visual 
decoding involves tasks as high in the ordering [in accuracy of judgment] as 
possible" (Cleveland, 1985, p. 255). For example, data from a pie graph always can 
be shown by a bar graph; in reading a bar graph, one can make judgments of posi- 
tion along a common scale instead of having to make less accurate angle judgments. 

The taxonomy (see Table 2) has been shown to have several limitations as a stand- 
alone description of what makes a good graph (e.g., Carswell, 1992; Spence & 
Lewandowsky, 1990). This taxonomy is limited to a single parameter of graphical- 
display design, that is, the choice of the physical, predominantly geometric dimen- 
sions that are used to convey quantitative information. Cleveland and McGill 
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Table 2 
Cleveland and McGill's Taxonomy of Specifiers Ordered 
From Most to Least Accurately Used (Carswell, 1992; Cleveland, 1985) 

Specifier Representative graphical forms 
Position on common aligned scale Line graphs, bar charts (horizontal and 

All data values are referenced using a single vertical), univariate dot charts and point 
scale (e.g., four box plots with a single scale). plots, many types of pictographs, histo- 

grams, profiles, bars with decorative 
depth, stem plots, box plots (last two 
added by authors) 

Position on common nonaligned scales Polygon displays (stars, polar plots) with 
All data values are referenced using more reference axes, bivariate point plots, 

than one scale (e.g., two box plots shown with scatter plots, statistical maps with framed 
one scale and two box plots shown with a rectangles 
second, identical scale). 
Length Polygon displays (stars, polar plots) 

Some lengths are easier to compare than without reference axes, hanging histo- 
others; there is a need for a fixed percentage in- grams, segmented bar charts, trees, castles, 
crease in line length for detection of a difference. cosmographs 
Angle/slope Pie charts, disks, meters 

Angle judgments are subject to bias; acute 
angles are underestimated and obtuse angles are 
overestimated. Further, angles with horizontal 
bisectors tend to be seen as larger than those 
with vertical bisectors. Angles of line segments 
contaminate judgments of slopes. 
Area Circles, blobs, some pictographs 
Volume/density/color saturation Cubes, some pictographs, statistical maps 

with shading (choropleth charts), 
luminance-coded displays 

Color hue Statistical maps with color coding 

emphasized the early stages of perceptual processing of these dimensions, and these 
stages affect only the initial event of registering a display. Others (Carswell, 1992; 
Simkin & Hastie, 1987; Spence & Lewandowsky, 1990) have found that the 
ordering of these visual dimensions may not be as distinct as Cleveland and McGill 

proposed. Carswell found little difference in accuracy for position, length, or 
angle judgments, but she found that area and volume judgments were less accu- 
rate than judgments of the other dimensions. Kosslyn (1994) suggested that these 
two categories (i.e., position/length/angle and area/volume) for ordering of judg- 
ment difficulty are more appropriate than the five individual categories proposed 
by Cleveland and McGill. 

Supplementary to these theories are more detailed concerns about perception 
arising from research on how the human mind organizes visual information. 
Relevant factors, primarily syntactic in nature, include visual principles of salience 
and orientation sensitivity; processing priorities involving line weight, orientation, 
length, and so on; and perceptual distortion of such things as area, intensity, and 
volume (see Kosslyn, 1985, 1994, for additional detail). 
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Taxonomy ofjudgment tasks. Models of graph comprehension discussed so far 
have focused primarily on perceptual processing, and graph design is emphasized 
in these models. Simkin and Hastie (1987) broadened the focus by noting that 
display design and judgment tasks interact to determine graph-comprehension 
performance. They found that when presented with a bar chart (type of graph) and 
asked to provide a summary of the information in the display (judgment task), graph 
readers spontaneously made comparisons between the absolute lengths of the bars 
(referred to as comparison judgments). With pie graphs, most respondents compared 
individual slices with the whole (referred to as proportion judgments). When 
making a comparison judgment, research participants were most accurate in 
decoding position (simple bar graph); thus, Cleveland and McGill's theory was 
supported. However, when making a proportion judgment, participants were most 
accurate in decoding angle (pie graphs), a finding that ran counter to Cleveland and 
McGill' s proposed order of accuracy. Simkin and Hastie concluded that the codes 
originally proposed by Cleveland and McGill interacted with the judgment tasks. 
Apparently, although visual decoding is a necessary component of graph compre- 
hension, it is not sufficient (Dibble & Shaklee, 1992). 

Using the results of research, we have detailed a taxonomy of the kinds of judg- 
ment tasks that are most often used when one reads graphs and tables and have 
described the interaction of the tasks with different kinds of graphs and tables. In 
the Mixed Arithmetic-Perceptual (MA-P) Model, Gillan and Lewis (1994) found 
that when people interacted with displays, they did so to answer common questions 
that required them to complete a number of arithmetic operations. On the basis of 
Gillan and Lewis' s list and several discussions of the nature of judgment tasks (e.g., 
Dibble & Shaklee, 1992; Feliciano, 1962/1963; Follettie, 1980; Hollands & Spence, 
1992; Lohse, 1993; Maichle, 1994; Simkin & Hastie, 1987; Vessey, 1991; 
Washburne, 1927a, 1927b), we suggest the following taxonomy of judgment tasks: 

1. The focus of attention is on one quantity. Tasks require point reading, that is, 
identifying the value of a single specifier or extracting an absolute point value. 
2. The focus of attention is on integrating information across data points. Tasks 
involve the use of two or more values in the data. The graph reader uses the infor- 
mation to (a) perform computations such as determining the sum of a set of values, 
a mean among values in the data, or the ratio of two values; (b) make comparisons, 
either part-to-part comparisons among values or part-to-whole comparisons carried 
out quantitatively or qualitatively (the reader may identify exact values in order to 
state a numerical difference, make estimations to determine relative differences, 
or determine proportions); or (c) identify trends on the basis of qualitative trend 
information or compare trends qualitatively or quantitatively (to determine trends, 
one may identify increases, decreases, or fluctuations). 

According to Gillan and Lewis (1994), to carry out the judgment tasks, people 
apply a set of component processes-searching for spatial locations of specifiers, 
encoding the values of specifiers (e.g., using an axis and associated labels), 
performing arithmetic operations on the encoded values, making spatial compar- 
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isons among specifiers (e.g., relative heights or lengths), and responding with an 
answer. The interaction between the type of display and the task determines the 
combination and order of these processing steps. Further, "when there is compat- 
ibility between the task and the type of display, perception of the judged charac- 
teristic is direct, requiring simpler or fewer mental operations" (Hollands & Spence, 
1992, p. 315). 

Vessey (1991) classified tasks as spatial or symbolic. Spatial tasks, those that 
lead to assessing the problem area as a whole, are facilitated by the use of graphs. 
Symbolic tasks, those that lead to precise data values, are facilitated by the use of 
tables. She noted that graphs may also include table information; for example, bar 
graphs may have numerical values at the end of each bar, in which case these graphs 
include both spatial and symbolic information. Like Hollands and Spence (1992), 
Vessey pointed to a need for compatibility of display type and task, characterizing 
this compatibility as cognitive fit when the match of display type and task led to 
use of similar consistent problem-solving processes. 

Feliciano (1962/1963) provided evidence of levels of difficulty with respect to 
judgment tasks that do not appear to be tied to the type of display. For example, 
she found that locating an absolute value or deriving a total was easier than making 
a comparison. Lohse (1993) noted that of the three types of tasks (i.e., point 
reading, making comparisons, and identifying trends), point-reading questions 
were answered the fastest, followed by trend questions, and finally by comparison 
questions. 

From the field of statistics, Graham (1987) suggested that the use of graphs may 
be related to one's purposes for data analysis in a statistical investigation: (a) de- 
scribing data, (b) summarizing data, (c) comparing and contrasting two or more 
data sets, or (d) generalizing about a population or predicting the next case. He 
recommended that line plots, bar graphs, pie graphs, line graphs, stem plots, and 
histograms be used for the first and third purposes and, with the exception of the 
pie graph, for the fourth purpose as well. Box plots are most useful for the second, 
third, and fourth purposes. He also included the use of tables as a representational 
tool for the first, third, and fourth purposes. Summary statistics related to center, 
spread, and variation are most appropriate for the second purpose. 

Contextual setting. In the work reviewed to this point, researchers have used 
primarily context-free graphs and focused on discriminability of symbols and 
perceptual processes. Carpenter and Shah (1998; Shah & Carpenter, 1995) were 
among the first graph-perception researchers we found to use graphs that show data 
from real-world contexts (e.g., axes are labeled and the graphs titled) in their tasks 
(see Figure 3). We refer to these graphs as within-context graphs. Carpenter and 
Shah proposed that graph comprehension of line graphs emerged from an integrated 
sequence of several types of processes: (a) perceptual processes of pattern recog- 
nition that encode graphic patterns; (b) perceptual processes that operate on those 
patterns to retrieve or construct qualitative or quantitative meanings (e.g., judgment 
tasks); and (c) conceptual processes that translate the visual features into concep- 
tual relations when one interprets titles, labels, and scales as well as any other keys 
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or symbols that are part of the display. One uses this last set of processes only when 

completing tasks set within real-world contexts. Researchers must consider the 
effect of the graph's visual characteristics (i.e., syntax) and the graph's context (i.e., 
semantics) on one's comprehension. 

Vocabulary Score vs. Age (yrs.) Vocabulary Score vs. TV Watched (hrs.) 
by TV Watched (hrs.) by Age (yrs.) 

TV Watched Age 
200 8 hrs. 200 50 yrs. 

S180 ci 180 
o -2 hrs. 0 

S160 160 

S 

140 O 140 

S120 "- 120 

100 100 20 yrs. 

80 80 
20 50 2 8 

Age (yrs.) TV Watched (hrs.) 

Figure 3. Examples of within-context graphs. Note. From "A model of the perceptual and 
conceptual processes in graph comprehension," by P. A. Carpenter and P. Shah, 1998, 
Journal of Experimental Psychology: Applied, 4, p. 78. Copyright ? 1998 by the American 
Psychological Association. Reprinted with permission. 

A major component of the graph reader's interpretation process is relating graph 
features to their referents. "Indeed, the majority of the time spent in graph compre- 
hension involves reading and rereading information from the axes and label regions 
of the graph ... and less time is spent solely on the pattern of lines on the graph" (Shah 
& Carpenter, 1998, p. 96). Carpenter and Shah's (1998) work focused on processing 
of line graphs for data sets involving three continuous variables. Tasks on such data 
sets are not commonly encountered; the data and the resulting graphs reflect complex 
analyses. Even so, having situated their consideration of graphs within real-world 
settings illustrates the need for researchers to address the interaction of graphs not 
only with judgment tasks but also with the contexts in which data are situated. A 
graph user must sort through the "situation" of the graph within the context of his 
or her own frame of reference and focus interpretation on what is presented by the 
data in the graph, regardless of preconceived notions about the situation. 

Others have raised the issue of context. Peterson and Schramm (1954), in 
discussing the generalizability of their results, acknowledged that although "there 
is no evidence in the literature that subject matter makes any difference in the accu- 
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racy with which ... graphs are read, ... it is intuitively convincing that subject matter 
should have some effect on the choice of graphic form" (p. 187). They recom- 
mended that the relationship between subject matter and choice of graph form be 
further investigated. 

In some earlier studies, the real-world contexts in which the data were situated were 
controlled (e.g., Culbertson & Powers, 1959; Feliciano, 1962/1963; Feliciano, 
Powers, & Kearl, 1963; Washburne, 1927a, 1927b) so that the same contextual situ- 
ation was used with multiple display types and tasks. However, Follettie (1980) argued 
that, all things considered, semantic content could not usefully be held constant in 
investigations that involved several kinds of displays. He noted that even when the 
given semantic content could be presented using each of several forms, using different 
displays usually would not do justice to each form if the semantic content were held 
constant. For example, numerical tables are useful for conveying precise numerical 
values. Although this information can be conveyed using bar graphs, a bar graph high- 
lights relative magnitudes, which are considered analog information; numerical 
values can be approximated only through scale interpolation. 

More recently, Mooney (1999) defined a construct called statistical intuition as 
"the ability to apply statistical skills within various contexts or situations suited to 
what is needed" (p. 64). Because data are grounded in real-world contexts, a graph 
reader must be able to describe, organize, represent, and analyze and interpret data, 
taking into account the contextual frame of the data. Part of one's statistical intu- 
ition is a sense of reasonableness, that is, "the use of logic or sensibility in 

connecting statistical thinking to the context" (p. 127). Balance is another compo- 
nent in statistical intuition. The graph reader must balance statistical application 
and context. For example, if context outweighs statistical application in the student' s 
mind, a student asked to argue for the "best allowance" using data represented on 
a histogram showing allowances for 30 students, with a cluster of allowances around 
$5.50, might ignore the data and argue that $3.00 makes sense because that is the 
allowance he received. 

McKnight, Kallman, and Fisher (1990) have discussed the nature of graph- 
reading processing errors. The translations to the "messy" world of everyday 
reality in which knowledge has links to one's other knowledge as well as to 

personal beliefs and emotional reactions introduce yet another level of complexity. 
The graph reader' s situational knowledge may interrupt her work on the cognitive, 
information-processing tasks performed in interpreting the graph. Such situational 
knowledge is diverse (Janvier, 1981; McKnight et al., 1990). Janvier commented 
that readers of most graphs used in his study showed "remarkable diversity of 
personal perceptions and/or conceptions" (p. 120) related to the context provided 
by the situation. Consideration of the role of context increases the number of 
elements to which the graph reader must attend and, in effect, possibly provides 
for a different kind of abstraction that may distract from the original purposes for 
reading a graph (Janvier, 1981). Clearly, the literature related to situated cognition 
(e.g., Kirshner & Whitson, 1997) is relevant here, though a comprehensive review 
is beyond the scope of this article. 
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Characteristics of the Discipline 

Statistics involves the systematic study of data, specifically, collecting data, 
describing and presenting data, and drawing conclusions from data (Moore, 1991). 
Associated with this discipline are various tools and concepts, some of which affect 
graph comprehension. The spread and variation within a data set, the type of data, 
the size of a data set, and the way a representation provides structure for data (i.e., 
graph complexity) can influence graph comprehension. 

Spread and variation. In structuring information, one should consider data 
reduction and scaling. The transition from tabular and graphical representations that 
display raw data to those that present grouped data or other aggregate summary 
representations is called data reduction. In this process, one first considers how to 
reduce data to meaningful summaries (Ehrenberg, 1975). Scaling is a tool for data 
reduction. 

When considering graphs with L-shaped frameworks as tools for data reduction, 
one should note that the axes have different meanings. For example, in bar graphs 
of ungrouped data, the vertical axis displays the value for each observation whereas 
the vertical axis for bar graphs of grouped data or for histograms (as considered 
here) provides the frequency of occurrence of each observation or group of obser- 
vations. To display ungrouped data from a bar graph as grouped data on a bar graph, 
one must redefine the x- and y-axes. In a display of reduced data, the y-axis 
provides information about the frequencies of repeated data values; the frequen- 
cies are designated by the heights of the bars rather than by individual plot elements. 
Readers find distinguishing the two axes problematic (Bright & Friel, 1998). 
Researchers have considered other graph types in a similar manner, highlighting 
possible graph-reading difficulties that reflect issues related to data reduction 
(Friel, 1998; Friel & Bright, 1996). 

Both Fry (1984) and Rangecroft (1994) highlighted the use of scale (i.e., the lack 
of one-to-one correspondence between the data and a square on the chart) as an 
important component of graph structure. Fry distinguished between the kinds of 
scaling (e.g., nominal, ratio) and the kinds of scaling units (e.g., arithmetical, 
percentage, standard score). Rangecroft (1994) noted that often students are able 
to draw or read a given scale but have little idea how to choose an appropriate scale 
for a given data set. 

Graph scale affects one's reading of the frequency of values. For example, in bar 
graphs or histograms, the frequency axis will often be scaled to accommodate 
increased sizes in the counts of data values. Similarly, the idea of scale may be 
implicit in the axis that provides information about the data. Beeby and Taylor (as 
cited in MacDonald-Ross, 1977) found that in reading data from line graphs, 
people persistently misread the scale on the vertical axis; when only alternate lines 
were numbered (e.g., 0, 2, 4, 6, 8), the unnumbered lines were read as halves (e.g., 
the line between 6 and 8 was read as 6.5). Dunham and Osborne (1991) found that 
if students do not attend to scale when they use line graphs for laboratory or statis- 
tical data, they may have problems in interpreting asymmetric scales and in 
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choosing appropriate scales to make good use of the graphing space. Leinhardt, 
Zaslavsky, and Stein (1990), in their review of research on function graphs, noted 
that the shape of a graph changes depending on the scale; this change may create 
a "conceptual demand" (p. 17) that affects the mental image a graph user is able 
to construct. We believe that these issues related to scale and line graphs are 

applicable to other graphs as well. 

Data type and size of data set. One should consider both data type and the size 
of the data set in determining which graph to use (Landwehr & Watkins, 1986). 
Picture graphs, line plots, and bar graphs are useful for summarizing data that 
include repeated measures (Landwehr & Watkins, 1986) and are appropriate for 

studying nominal, ordinal, and interval data involving counts. In contrast, 
histograms are used most often to organize continuous data in which there may be 
few repeated measures (Moore, 1991). Because one can scale both the frequency 
and the data-value axes, histograms are useful for work with large data sets. One 
can use pie or circle graphs to efficiently compare percentage or proportion data 
as they relate to a single characteristic (Mosenthal & Kirsch, 1990b). Stem plots 
may be used to present large numbers of data values; for comparison of two data 
sets, back-to-back stem plots are useful. Box plots are useful for highlighting 
comparisons across two or more data sets (Landwehr & Watkins, 1986), regard- 
less of the size of those data sets. 

Graph complexity. We found no empirical studies that addressed the relative order 
of complexity in graphs related to issues that arise from data reduction. Rangecroft 
(1991a, 1991b, 1994) posited the need for a well-thought-out and detailed treat- 
ment of what students need to know to use and understand graphs in various 

subject areas and across stages or grade levels of schooling. 
During the early school years, teachers should promote the fundamental notion 

that one needs a common baseline when comparing frequencies or measures. The 
teacher creates a gradual transition from objects themselves to the more abstract 
bar graph (Rangecroft, 1994). Moritz and Watson (1997) noted that using 
pictographs is "particularly important to establish links between actual objects and 
one-to-one [correspondence in the] representation of data, prior to [introducing] 
more symbolic forms of scaled representation" (p. 222). This sequence applies to 
the use of line plots. 

At the upper levels, the progression of graph work is much less clear-cut. Scaling 
(a next level of data reduction) emerges as another fundamental notion students 
must develop if they are to understand bar graphs and other types of graphs 
(Rangecroft, 1994). Stem plots and histograms have few repeated measures, have 
a large spread in the data, and necessitate the use of scaling of both frequency and 
data values for purposes of data reduction. Histograms are more difficult for 
students to understand conceptually and cause major problems for many pupils 
(Rangecroft, 1994). Box plots, although not difficult to construct once the concept 
of median has been developed, offer minimal information about the shape of a distri- 
bution and the size of the data set and seem to be relatively abstract (Friel, 1998). 
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Line graphs may be more difficult to comprehend than other graphs; to realize that 
the relationship between two variables can be shown by a Cartesian graph is a big 
step for students (Bell, Brekke, & Swan, 1987). 

Characteristics of Graph Readers 

Several researchers (e.g., Carpenter & Shah, 1998; Meyer, Shinar, & Leiser, 
1997; Peterson & Schramm, 1954) have acknowledged the importance of graph 
readers' characteristics. For example, Meyer et al. stated, "The relative efficiency 
of a display may depend partly on the characteristics of the user population" (p. 
269). Carpenter and Shah noted that "individual differences in graphic knowledge 
should play as large a role in the comprehension process as does variation in the 
properties of the graph itself" (p. 97). 

Users differ on a number of variables, only a few of which have been studied in 
the context of displays (Meyer et al., 1997). Cognitive ability as it relates to 
Piagetian development has been considered. For example, Berg and Phillips (1994) 
investigated the relationship between 7th, 9th, and 11 th graders' logical-thinking 
structures and their abilities to construct and interpret line graphs. Results indicated 
a significant positive relationship among logical thinking, proportional reasoning, 
and graphing ability. Wavering (1989) indicated that a logical progression from 
simple to complex reasoning in graphing needs to be developed at the middle and 
high school levels. Others (Dillashaw & Okey, 1980; Padilla, McKenzie, & Shaw, 
1986) have found that to interpret line graphs, one needs abstract-reasoning ability. 

Roth and McGinn (1997) suggested an alternative to researchers' studying 
graphing ability from a cognitive perspective, namely, studying graphing as prac- 
tice. This perspective "focuses on participation in meaningful practice and expe- 
rience; lack of competence is then explained in terms of experience and degree of 
participation rather than exclusively in terms of cognitive ability" (p. 92). They 
argued that, in school, students make graphs for the purpose of making graphs, 
whereas, outside schools, people use graphs to achieve certain ends. Like students 
learning a second language with few opportunities to practice it, students with few 
opportunities to engage in graphing as practice show less competence than those 
for whom it is routine. 

MacDonald-Ross (1977) raised the idea of a masterperformer (p. 403) as a crit- 
ical construct, reflecting a difference between a reader familiar with graph format 
and one who is not. Maichle (1994), in investigating good line-graph readers, found, 
for example, that they experienced an "orientation phase" to the graph before they 
responded, in the "verification phase," to specific questions about the graph. Roth 
(1998) suggested that expertise was complex; for graphs used by scientists in 
different fields, not only experience but also knowledge of the phenomenon 
depicted affected graph comprehension.4 Roth, in his attempts to understand 

4 The novice/expert literature is relevant. Space limits prohibit a comprehensive review here. 
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graph-interpretation practices, moved beyond thinking about the user' sfamiliarity 
with the context in which the data are situated to address the effect of well-devel- 
oped domains of knowledge or experience that can color such familiarity in ways 
that are more complex than originally may have been imagined. Researchers need 
to learn how a graph user sorts through both the situation of a graph and his or her 
own preconceived notions with regard to this situation to focus on interpreting the 
data in the graph. 

Examining general learner characteristics (e.g., general intelligence) may be 
important for researchers who are trying to understand how the learner interprets 
information displayed in graphs. For example, Vernon (1946) noted that levels of 
education and general intelligence were confounded in her data; she suggested that 
general intelligence might be the more influential variable. Winn (1991) noted that 
in the context of dual-coding theory, "the additional support provided by redun- 
dant imaginal encoding would be helpful to low-ability students but would not be 
required by high-ability students" (p. 232). Yet, there is no evidence that measures 
of general intelligence are effective in explaining differences in interpretations of 
information presented in graphs. 

Mathematics knowledge and experience have been identified as other charac- 
teristics necessary for graph comprehension (e.g., Curcio, 1987; Eells, 1926; 
Fisher, 1992; Gal, 1993, 1998; Maichle, 1994; McKnight & Fisher, 1991; Russell, 
1991; Thomas, 1933). Gillan and Lewis (1994), in the MA-P model described 
earlier, separated processing steps into nonarithmetic and arithmetic components. 
They suggested that graph users often read graphs for quantitative purposes and 
perform a variety of arithmetic operations (included earlier as part of the taxonomy 
of judgment tasks) when reading graphs. They suggested that the time to apply 
calculation procedures may vary depending on the procedure being used. 

Those studying graph comprehension may need to consider the development of 
number knowledge. Russell (1991) commented that "data analysis activities are 
closely related to key mathematical ideas involved in the processes of counting, 
measuring, and classifying" (p. 164) and that younger students need to deal with 
smaller sets of data and smaller numbers. Curcio (1987) reported that the mathe- 
matical content of a graph, that is, the "number concepts, relationships, and funda- 
mental operations contained in it" (p. 383), was a factor in which prior knowledge 
seemed necessary for graph comprehension. Gal (1993) stated that "many [high 
school] students have difficulty comprehending basic proportional concepts, such 
as 'percent' or 'ratio,' and applying them to numerical data presented in statistical 
contexts" (p. 199). 

More generally, McKnight and Fisher (1991) found a relationship among math- 
ematics experience, identifying typicality of types of bar graphs, and reading bar 
graphs. Maichle (1994) found that medical-school applicants whose majors were 
in mathematics normally attained the highest graph-comprehension scores on the 
admission test. 
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PART II: INSTRUCTIONAL IMPLICATIONS 

Graph comprehension was defined earlier as the abilities of graph readers to 
derive meaning from graphs created by others or by themselves. What does this 
review contribute in the way of instructional implications for developing graph 
comprehension? We address this question by defining a construct called graph sense 
and associated behaviors that may be used to characterize the nature of graph 
comprehension that we want to see developed in the school environment. We use 
what we have learned about critical factors, complemented with our intuition and 
experiences, to propose a progression for sequencing development of traditional 
types of graphs for the K-8 grade levels and discuss the importance of emerging 
graph work carried out in more dynamic environments provided by technology. 
Finally, we reflect on the use of graphs as tools for making sense of information. 
What might be the nature of the instructional environment that would support this 
purpose? We wonder whether it is possible to view data representation from a 
constructivist perspective, such that teachers seek to let learners struggle with orga- 
nizing and making sense of the information before introducing formal work with 
the traditional types of displays that are so commonly used. 

Graph Sense 

Graph comprehension involves being able to read and make sense of already 
constructed graphs such as those often encountered daily in the popular press. It also 
includes a consideration of what is involved in constructing graphs as tools for struc- 
turing data and, more important, what is the optimal choice (e.g., Meyer et al., 1997) 
for a graph in a given situation. Central to graph comprehension is the interaction 
among the three task characteristics discussed earlier: the process of visual decoding, 
the nature of the judgment tasks, and the effect of contextual setting. 

We build on earlier work on defining number sense (NCTM, 1989; Sowder, 1992) 
and symbol sense (Fey, 1990; NCTM, 1989). Number sense and symbol sense can 
be considered as representing certain ways of thinking rather than as bodies of 
knowledge that can be transmitted to others. A similar approach seems to be a prof- 
itable way to think about graph sense: Graph sense develops gradually as a result 
of one's creating graphs and using already designed graphs in a variety of problem 
contexts that require making sense of data. Like others who have worked on 
number sense (Sowder, 1992) and symbol sense (Fey, 1990), we provide a 
suggested list of behaviors that seem to demonstrate a presence of graph sense. In 
Table 3, we list both these behaviors and areas of attention attributable to each 
behavior. 

We are uncertain how the purposes for using graphs (i.e., analysis of data and 
communication) interact to support the development of graph comprehension. 
We need to think carefully about the kinds of examples that will help us understand 
their interactions and the ways that the behaviors identified here might play out as 
demonstrations of graph sense. 
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Table 3 
Behaviors Associated With Graph Sense 

Ability Focus of attention 
1. To recognize the components of Graphs are used to make visible quantitative and 
graphs, the interrelationships among categorical information at a variety of levels of 
these components, and the effect of detail. Data reduction involves moving from 
these components on the presentation tables and graphs that display raw data to those 
of information in graphs that present data that are grouped. 
2. To speak the language of specific Through their language related to communcating 
graphs when reasoning about informa- statistical ideas (Gal, 1993), students build 
tion displayed in graphical form awareness of the structural components of a 

graph and their interactions with contextual in- 
formation. Each kind of graph has its own lan- 
guage, that is, the identified structural compo- 
nents and their interrelationships that may be 
used to discuss the data that are displayed. 

3. To understand the relationships Graph readers need to be aware of both sym- 
among a table, a graph, and the data bolic and spatial tasks and the ways in which 
being analyzed tables and graphs help address these tasks. 
4. To respond to different levels of ques- The three levels of questioning involve extract- 
tions associated with graph comprehen- ing data from a graph, interpolating and finding 
sion or, more generally, to interpret relationships in the data as shown on a graph, 
information displayed in graphs and extrapolating from the data and interpreting 

the relationships identified from a graph. 
5. To recognize when one graph is more Making decisions about which graph is most 
useful than another on the basis of the useful for representing a set of data includes 
judgment tasks involved and the kind(s) consideration of both the nature of the data 
of data being represented (Landwehr & Watkins, 1986) and the purposes 

for analysis (Graham, 1987). Some graph formats 
are more appropriate for specific types of data 
and specific purposes than others. 

6. To be aware of one' s relationship to Although context may help students use prior 
the context of the graph, with the goal knowledge, such prior knowledge also may 
of interpretation to make sense of what cause misinterpretations of the information in 
is presented by the data in the graph and the graph. Personalization of the context can 
avoid personalization of the data bring in various interpretations of the goals of a 

task and a range of strategies, increase the num- 
ber of elements to which one must attend, and 
possibly provide for a different kind of abstrac- 
tion that may distract from the original learning 
goals (Janvier, 1981). Thus, understanding the 
constraints imposed by a context is an important 
factor in making a sensible interpretation 
(Mooney, 1999). 

Progression of Graphs for Instruction 

The critical factors discussed earlier indicate some guidelines for creating a 
progression for sequencing the development of traditional types of graphs for the 
K-8 grade levels. Figure 4 is a visual organizer, showing a suggested sequencing 
of graphs related to grade levels and accompanying themes that need to be consid- 
ered when addressing this sequence. We propose a number of guidelines; although 
much of the research reported focused on reading and interpreting graphs, in these 
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4----- Tables as representational or as organizing tools ------ 

Grades K-2 - Grades 3-5 - Grades 6-8 

"* Object graphs 
"* Picture graphs 
"* Line plots 
"* Bar graphs * Bar graphs 
(with use of grid lines (stacked or using 
to facilitate reading multiple sets of 
frequencies; labeling data) 
of bars with numerical * Stem plots 
values) Stem plots * Pie graphs * Pie graphs 

(reading primary (reading and 
emphasis) constructing) 

"* Histograms 
"* Box plots 
"* Line graphs 

--*. Introduction and use of scale 4 

4 - Developing mathematics knowledge -o 

- 0 Complexity of data " 

Figure 4. Graph/display complexity: Suggested progression for introduction of types of 
graphs (includes both reading and constructing displays). 

guidelines we address both constructing and reading graphs. We assume that 
constructions are within context, using either students' own data or data provided 
(e.g., data sets from Web sites that relate to students' lives) for students to repre- 
sent and describe. 

1. Tables serve as effective tools for data representation and organization. How 
consistently tables have been incorporated into the work of organizing and describing 
data is unclear. The two distinctions for use of tables (i.e., as a display type or as an 
organizational tool) need to be more deliberately considered as part of any increased 
attention to students' use of tables in exploring data representations. 
2. Two other components that need to be considered are children's mathematical 
knowledge and the complexity of the data being explored. What is known about 
how children's mathematical knowledge develops is relevant to considering such 
things as the numbers of data items, the numbers of categories for comparison, the 
use of additive versus multiplicative reasoning, and so on. The complexity of the 
data refers not only to the number of data items or categories but also to the kinds 
of data types (e.g., discrete vs. continuous), the spread and variation within the data 
set, and so on. 
3. At Grades K-2, we would emphasize display types that can function in ways 
to help students tally responses; these types include simple tables, object graphs, 
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line plots, and bar graphs. We recommend that students initially use physical 
objects and then use pictures or materials such as linking cubes to represent 
numbers of objects before using the more abstract representations provided by line 
plots or bar graphs. At this abstract level, students first consider frequencies of 
occurrences of measures. Line plots maintain the evidence of the presence of indi- 
vidual data values; a child can point to his or her X. In traditional bar graphs, the 
individual data values may seem to "disappear," so that initially shading bars with 
alternating white and black colors (or the like) to parallel the structure of line plots 
and labeling the bars with the frequencies are strategies that may help students 
develop understanding of the concept of frequencies. Often, in the early grades, 
students make bar graphs in which each bar represents an individual student's 
datum; the vertical axis becomes the axis that marks the measure of the data 
values. This version of a bar graph is often used for data that have considerable 
variation, such as height data or circumference-of-pumpkins-measured-using- 
strings data. The move from this kind of bar graph (i.e., having no data reduction) 
to a bar graph that displays frequencies (i.e., showing simple data reduction with 
the horizontal axis marking the measures of data values) may be confusing for 
students if they are not given opportunities to thoughtfully explore the transition. 
4. At Grades 3-5, students continue to use graphs that were introduced in the earlier 
grades. In addition, they may encounter more complex data sets. Bar graphs 
continue to be used and can include stacked bar graphs and multiple bars to show 
sets of data displayed within the same graph framework. In addition, if the data sets 
are large, students may begin to use scaling to label the frequency axis (e.g., a class 
of students surveying pets finds that the students own a total of 75 dogs, 24 cats, 
8 cows, and so on; they wish to represent those data with a bar graph). In creating 
picture graphs in which one picture represents some number (other than 1) of data 
items, one is beginning to use notions of scale. Data with considerable spread and 
variation can be represented using stem plots. Pie graphs can be used; although 
students at this age generally do not do mathematics related to percentages, they 
can begin to read pie graphs included in applied contexts. 
5. In Grades 6-8, paralleling students' increased mathematical sophistication 
(e.g., moving from additive to multiplicative reasoning) and greater abstract- 
reasoning capabilities (e.g., extrapolating or predicting from data), more complex 
data sets with greater spread and variation than those seen in earlier grades and with 
data that are continuous provoke the need for graphs with scaled intervals as well 
as scaled frequencies. Students will continue to use graphs introduced at earlier 
grades but will augment their work with use of histograms, box plots, and line 
graphs. Students may be asked to compare data sets, necessitating the use of the 
graph types noted. 

Such a progression need not be considered "hard and fast." On the one hand, 
researchers have shown that stem plots may be introduced to young children 
(Pereira-Mendoza & Dunkels, 1989). Also, pie graphs may be introduced infor- 
mally to students well before they are able to carry out the mathematics needed to 
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make pie graphs (e.g., Joyner, Pfieffer, & Friel, 1997). On the other hand, middle- 
grades students may experience difficulties working with histograms (Friel & 
Bright, 1996) and with box plots (Friel, 1998), apparently in part because data reduc- 
tion results in a "disappearance" of the actual data. Considering relationships 
among variables, instead of simply constructing and reading line graphs, also 
reveals increased levels of complexity. 

Given the extensive research focused on graph perception, we believe that the 
perceptual demands related to graph design affect graph comprehension. Because 
researchers know much about perceptual processing, graph comprehension may 
be addressed, in part, by controlling perceptual demands by following Kosslyn's 
(1994) recommendations with respect to graph design as a current "standard" 
against which to assess graphs used as part of research, found in the popular press, 
or created by available technology. 

Although several researchers indicated that mathematics knowledge may be 
related to graph comprehension, we found no analyses in which researchers consid- 
ered the development of mathematics (and arithmetic) knowledge and specifically 
related this development to the kinds of displays being used or judgment tasks 
required for reading displays. For example, young children demonstrate their early 
understanding of relationships among numbers by directly modeling, using objects; 
young children may not identify differences between two or among three quanti- 
ties even when the quantities are modeled with cube towers (similar to bars on a bar 
graph) that are placed adjacent to one another (Richardson, 1990). These and other 
aspects of number development seem to have implications for the ways data are 
explored and represented in the early grades; for example, representing data orga- 
nized initially in no more than two or three classification categories may make sense. 

Such analysis can be extended to expected growth and development of mathe- 
matics knowledge for Grades K-12 students, and this analysis has implications for 
their work with graphs and tables. As one example, the use of scale may depend 
on the students' being able to count by 2s, 5s, 10s, and so on, as well as on their 
thinking about certain numbers as units themselves (e.g., 10 as a unit). Also, for 
children by ages 12-15, multiplicative reasoning as opposed to additive reasoning 
emerges as a central mathematical process (Harel & Confrey, 1994). Relative 
frequencies and percentages are both ratios that require multiplicative reasoning. 

In addition to providing guidelines for the introduction and use of traditional 
graphs, we consider emerging graph work being carried out in dynamic techno- 
logical environments. This work may lead to new directions in exploring and 
representing data. For example, Hancock et al. (1992) discussed how in using 
TabletopTM (TERC, 1995), a computer-based data-analysis tool, students have 
opportunities to explore animated visual representations that include nontraditional 
representations such as Venn diagrams and variations of traditional representations 
that focus the user on the structure of the data being explored rather than on the 
characteristics of the graph being used. In work with microcomputer-based labs 
(MBL) (e.g., Mokros, 1985, 1986), researchers have shown ways students can 
understand change-over-time graphs through such dynamic, interactive investi- 
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gations. Cobb (1999) discussed the use of a new kind of computer-based minitool 
designed to provide students with a means of ordering, partitioning, and otherwise 
organizing sets of data points in ways that seem to provoke discussion about 
comparing data sets through the use of multiplicative reasoning strategies rather 
than additive reasoning strategies. These data-representation tools focus attention 
on the underlying logico-mathematical structures related to the structure of data 
rather than on how to make a particular kind of graph. 

Creating and Adapting Graphs to Make Sense of Data 

The goal in using displays is to be able to make sense of information with as much 
ease as possible. We briefly examined literature that is focused on students' 
inventing or reinventing representations as tools for use in understanding data, an 
area we believe needs further study. 

How do educators help children become inventors of displays that convey their 
own messages about the meanings of the data they are using? Are there explicit 
tasks that provoke such opportunities? Exploring the ways children (in particular), 
when not limited to standard representations, choose to represent data may be worth- 
while. Invented or reinvented representations may better convey explicit under- 
standings about data and the relationship between analyzing data and answering 
questions that have been posed. 

Inventing or reinventing representations often does not require one to create 
nonstandard displays. Making sense of data is the purpose for inventing or rein- 
venting representations. When students explore representations from the context 
of data sets, teachers can gain information about their understandings of complex 
ideas. For example, one of the authors is reminded of an exploration carried out 
with Grade 8 science students unfamiliar with scatter plots but familiar with the 
use of bar and line graphs in various problem situations. The students carried out 
an activity that involved estimating and counting the number of raisins in several 
half-ounce boxes of a specific brand of raisins. Boxes of a different brand of 
raisins were also available; one student wondered whether they would find a 
similar distribution for that brand. In fact, students found two different distribu- 
tions; this finding motivated them to weigh the raisins in each box for each of the 
two brands (sample size was 24 boxes of raisins). In the end, they had two sets of 
24 data pairs, that is, number of raisins and mass in grams. For homework, their 
teacher asked them to represent the data in some way that would permit them to 
compare these two brands of raisins. Students devised interesting displays, many 
of which they recognized as unsuitable when they tried to explain them to the class. 
One student returned with a scatter plot; whether she invented this representation 
or was helped by a parent we do not know. However, her classmates found her 
presentation exciting and certainly understood it more clearly than if it had been 
introduced through direct instruction without the motivation provoked by need. 

The use of technology may serve as a tool to provoke curiosity about various 
display formats. Technology-rich environments can foster a dynamic process of 
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data analysis that includes exploration and experimentation with graphs (e.g., 
Berg & Smith, 1994; diSessa et al., 1991; Hancock et al., 1992; Jackson et al., 1993; 
Lehrer & Romberg, 1996; Pratt, 1995). Such environments may prove helpful in 
developing the kind of flexible thinking about the interaction of data and graphs 
that supports the development of graph comprehension. A "protocol" may be 
needed for using such tools. Perhaps, educators want users to be able to anticipate 
how information will be displayed and to think about modifications that may be 
needed to make the technology do what they know they want done. 

Often, when students move to use technology such as computer graphing 
programs, they demonstrate a lack of understanding of the relationships among the 
graph, the type of data, the purpose of analysis, and the judgment task. The process 
of statistical investigation may need to be set within the broader context of problem 
solving (diSessa et al., 1991; Hancock et al., 1992; Janvier, 1981; Lajoie, Jacobs, 
& Lavigne, 1996). In this broader context, other complex issues may surface. For 
example, Hancock et al. noted the dilemmas students face in addressing the differ- 
ences among explaining the logic of a graph and 

(a) using that graph to characterize group trends; (b) constructing the graph to generate, 
confirm, or discomfirm a hypothesis; (c) connecting the graph with the data structures 
necessary to produce it; and (d) embedding the graph in the context of a purposeful, 
convergent project. (pp. 361-362) 

To resolve this dilemma, educators should attend to the three task characteris- 
tics of visual decoding, judgment task, and context. When students are making 
graphs to represent their own data, teachers should provide access to Kosslyn's 
(1994) guidelines for graph design. By applying the guidelines, students can 
account for the task characteristic of visual decoding. Students also need to be clear 
about the questions they are asking about data. Teachers need to be aware of the 
kinds of judgment tasks that arise from the questions students ask and the ways judg- 
ment tasks interact with graph choice. Clearly, when students explore and collect 
their own data, they may become familiar with the context; however, a teacher needs 
to help students understand the richness of possible questions to be explored. 
Similarly, in reading displays found in the popular press, students might be asked 
to assess the perceptual demands of the displays and to relate graph choices to judg- 
ment tasks. By listening to one another's interpretations, students will better under- 
stand the ways prior knowledge affects understanding of data displays. 

Conclusion 

Making sense of graphs appears to be more complex than once thought. In this 
review we have sought to build some connections and coherence among a variety 
of perspectives. In doing so, clearly we have introduced more questions than 
conclusions. 

Being explicit about the types of difficulties that may be encountered in reading 
graphs will help educators to interpret students' thinking. In particular, both clar- 
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ification of three critical areas of graph perception (i.e., visual decoding, judgment 
task, and context) and detailing of three levels of questions with the associated 
depths of understanding necessary in reading a graph are important in graph 
comprehension. 

Although the researchers cited throughout this article are from different disciplines 
and used different terminology, similarities in their views on understanding graph 
comprehension exist. We identified three main components of graph comprehen- 
sion; these components show a progression of attention from local to global features 
of a graph: (a) To read information directly from a graph, one must understand the 
conventions of graph design (e.g., Kosslyn, 1994); (b) to manipulate the informa- 
tion read from a graph, one makes comparisons and performs computations; and (c) 
to generalize, predict, or identify trends, one must relate the information in the graph 
to the context of the situation. Research on understanding what makes these three 
main components difficult for graph readers is needed. For example, what is it about 
the nature of the reasoning and the understanding of necessary information that 
makes comparing data sets a challenging task (e.g., Friel, 1998; Gal, 1998)? 

Although in this article we have emphasized the use of univariate data, study of 
bivariate data is important for upper-level mathematics curricula. Two major 
contexts in which bivariate data appear are (a) change over time and (b) cause/effect 
and correlation. Cause/effect and correlational situations occur in various real-world 
scenarios. One must, however, interpret correlational data carefully to avoid the 
common mistake of imposing a cause/effect relationship that may not be present. 
How the study of graphs might affect ability to distinguish between cause and effect 
and correlational relationships is unclear. 

Many directions may be pursued in the design of research. For example, a learn- 
er' s understanding of the task seems to affect both the types of information sought 
and the strategies for seeking that information. How does a learner determine the 
purpose of a task? How does understanding of that purpose relate to one's inter- 
pretation of data represented in a graph? Can a teacher pose questions to increase 
a learner' s understanding of purpose (see Table 1)? 

Context is important for graph comprehension, as it is for most learning. How 
does the learner's understanding of the context contribute to his or her interpreta- 
tion of data represented in a graph? Can one interpret data accurately without having 
a significant level of understanding of the context? How do the characteristics of 
the information (e.g., similarity or difference in magnitudes of data values and 
frequencies) affect the interpretation? 

For instruction on graphs, one needs to consider several elements: for example, 
sequencing of types of graphs, developing understanding of data reduction, and 
developing various aspects of graph sense. For students to gain deep knowledge 
about graphs and to make and use graphs effectively, they need instructional mate- 
rials that are carefully constructed. What are characteristics of effective instruc- 
tional material? How is sequencing of graphs in instruction related to the devel- 
opment of graph sense? What are the characteristics of effective questioning and 
discussion techniques? 



Susan N. Friel, Frances R. Curcio, and George W. Bright 153 

To provide effective instruction, teachers need to increase their knowledge of 
graphs and of how to teach graphs. Because of the recent emphasis on statistics and 
data analysis, graphs have only recently become an important part of the elemen- 
tary and middle school mathematics curriculum. Consequently, teachers may not 
have had adequate opportunities to learn about graphs. More materials (e.g., Friel 
& Joyner, 1997) need to be developed to fill this gap. But beyond the materials, 
how should professional-development experiences be structured so that teachers 
learn not only how to better interpret data presented in graphs but also how to help 
students develop similar skills? 

The design of future research needs to be directed at sorting out causes of diffi- 
culties that influence graph comprehension. An agenda for future research should 
take into account the ideas and issues discussed here. 
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